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Abstract We extend the temporal spectral element
method further to study the periodic orbits of gen-
eral autonomous nonlinear delay differential equations
(DDEs) with one constant delay. Although we de-
scribe the approach for one delay to keep the presenta-
tion clear, the extension to multiple delays is straight-
forward. We also show the underlying similarities be-
tween this method and the method of collocation. The
spectral element method that we present here can be
used to find both the periodic orbit and its stability.
This is demonstrated with a variety of different exam-
ples, namely, the delayed versions of Mackey–Glass
equation, Van der Pol equation, and Duffing equation.
For each example, we show the method’s convergence
behavior using both p and h refinement and we pro-
vide comparisons between equal size meshes that have
different distributions.
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Delay differential equations (DDEs) have been suc-
cessfully used to model many different phenomena
occurring in science and engineering contexts. Spe-
cific areas in which DDEs have been used extensively
include machining dynamics [7, 10, 40], systems bi-
ology [2, 8, 34] and laser systems [26, 37]. In some
models, for example in systems biology related appli-
cations, delays are used to avoid modeling certain pro-
cesses that are known to take a predetermined amount
of time but otherwise contribute little to the dynamics.
In other models, for example in machining dynamics,
the delay is intrinsic to the system and cannot be re-
moved.

DDEs are infinite dimensional dynamic systems
whose state-space is typically taken to be the space of
continuous functions. Therefore, DDEs require a func-
tion segment over a period of time as an initial condi-
tion rather than a point value at time zero as with an
ordinary differential equation. The infinite dimension-
ality of DDEs significantly complicates the resulting
analysis from both an analytical and numerical per-
spective [20, 39]. Furthermore, complicated behavior
can be readily observed in seemingly low-order equa-
tions [4, 21].

Due to the difficulties associated with the analyt-
ical aspects of DDEs, there has been significant fo-
cus on their numerical solution. The majority of this
work has focused on initial value solvers, mostly ex-
tending Runge–Kutta solvers to DDEs [5, 16, 18]. Al-
ternatively, other solvers based on an implicit Radau
method, e.g., RADAR5 by Guglielmi and Hairer [17],
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have also been used to solve stiff DDEs. These solvers
were designed to handle the specific complexities
of DDEs, such as the propagation of discontinuities
caused by the initial conditions. In this study, however,
we are interested in long-time dynamics, namely peri-
odic orbits. The numerical methods for analyzing pe-
riodic orbits directly as boundary value problems are
much less developed than the corresponding methods
for initial value problems. These methods typically use
a collocation-type discretization based on Chebyshev
or Gauss–Legendre points [3, 13, 14, 28]. Stability of
the periodic orbit may then be derived from the lin-
earization of the discretized system.

In this study, we consider an alternative approach
to numerically approximating periodic orbits of non-
linear DDEs based on the temporal spectral element
method, which is a type of (piecewise) Galerkin
method [24]. The temporal spectral element method
for delay systems is a modification of the spatial spec-
tral element method which has been widely used in
simulating the partial differential equations arising in
models of fluids and structures [33, 41]. The tempo-
ral spectral element method can also be viewed as
an evolution of the state-space temporal finite ele-
ment method (state-space TFEA) which has been used
to study the stability of equilibria of linear DDEs
[25, 31, 38]. We also show the underlying similarities
between this method and the method of collocation.

With the spectral element method, we seek to study
the periodic orbits of general nonlinear DDEs of the
form

dx

dt
= g
(
x(t), x(t − τ)

)
, (1)

with one constant delay τ > 0, and g : R
n × R

n → R
n

is a continuously differentiable function. Although we
describe the approach for one delay to keep the pre-
sentation clear, the extension to multiple delays is
straightforward. The spectral element method that we
present here can be used to find both the periodic or-
bit and its stability. This is demonstrated with a variety
of different examples; specifically, we study the peri-
odic orbits of the delayed Mackey–Glass equation, the
delayed Van der Pol equation and the delayed Duffing
equation.

The organization of this paper is as follows. Sec-
tion 1 describes the formulation of the boundary value
problem (BVP) used to solve for the periodic orbits.
Section 2 describes the discretization method used to

obtain a finite dimensional approximation of the in-
finite dimensional DDE. Section 3 describes a solu-
tion method based on the spectral element approach to
obtain periodic orbits of (1). Section 4 describes ob-
taining the linearized stability of the periodic orbit us-
ing the Floquet theory. Section 5 provides several case
studies to demonstrate the effectiveness of the current
approach while Sect. 6 contains concluding remarks.

1 Problem formulation

The periodic orbits of (1) can be obtained as the solu-
tions of an infinite dimensional boundary value prob-
lem (BVP). This BVP has three components:

1. The equation describing the system evolution with
time (e.g., see (1)).

2. The periodicity condition x(s) = x(s + T ) for s ∈
[−τ,0].

3. A phase condition which removes any translational
invariancy in the system and so ensures a unique
solution to the BVP.

These three components are discussed in more detail
in Sects. 1.1, 1.2, and 1.3.

Since it is not possible to deal directly with the in-
finite dimensional BVP numerically, it must first be
discretized to produce a finite dimensional approxima-
tion. The idea is that as the degree of approximation in-
creases, the solution of the finite dimensional problem
converges to that of the infinite dimensional problem.

General convergence proofs for different discretiza-
tions and solution methods are very sparse in the cur-
rent literature and typically focus on collocation as the
solution method, e.g., [13]. In the collocation method,
the evolution equation (1) is required to hold exactly at
finitely many collocation points. The spectral element
method described here instead uses weighted integrals
across the temporal domain. Nevertheless, there is a
connection between collocation methods and the spec-
tral element approach as will be shown in Sect. 3.

Regardless of the discretization method (Sect. 2) or
the solution method (Sect. 3), the end result is a large
system of algebraic equations which must then be
solved using a general nonlinear root finding method,
e.g., a Newton iteration. One additional benefit to us-
ing a Newton iteration is that stability information
(Floquet multipliers) of the periodic orbit can be de-
termined from the Jacobian used in the last step of the
iteration.
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1.1 The evolution equation

As previously described, any periodic solution of (1)
can be found by solving a related two-point BVP.
Since, in general, the period of the orbit is an addi-
tional unknown, time is rescaled such that t = T t̃ ;
thus, the true period enters into the equations as an
explicit variable T and the time period over which the
BVP is posed becomes simply unity. After dropping
tildes and rearranging, the equation describing the evo-
lution of the DDE for t > 0 becomes

f = dx

dt
− T g

(
x(t), x(t − τ/T )

)= 0, t ∈ [0,1],
(2)

where g is twice continuously differentiable and T is
the unknown period of the orbit.

1.2 The periodicity condition

The second component of the two-point BVP is the
periodicity condition which requires that the states at
t − τ/T < 0 be mapped back to [0,1]. This condition
can be described by

x(s) = x(s + 1), s ∈ [−τ/T ,0]. (3)

In this study, we use the modulo operator for t −
τ/T < 0 combined with algebraic equations at t =
0—whose number is equal to the number of states—to
enforce the periodicity condition; see Sect. 3.

1.3 The phase condition

There are several possible choices for the phase con-
dition, for example, fixing one of the solution com-
ponents at t = 0 [36]. Another choice is to use a dis-
crete orthogonality condition (x(0) − x0(0))T ẋ0(0) =
0, where x0 is the initial solution and x is the corrected
solution. However, the most commonly used alterna-
tive is to impose the functional orthogonality relation-
ship

p(x) =
∫ 1

0
xT

0 (t)ẋ(t)dt, (4)

where ẋ := dx
dt

and the superscript “T” denotes the ma-
trix transpose [12]. This condition minimizes the dif-
ference between x0(t) (the initial guess) and x(t) with
respect to translation.

Combining (2)–(4), the two-point BVP can be writ-
ten as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f = dx
dt

− T g(x(t), x(t − τ/T )) = 0,

t ∈ [0,1] (evolution),

x(s) − x(s + 1) = 0,

s ∈ [−τ/T ,0] (periodicity),

p(x) = 0 (phase).

(5)

2 Discretization method

There are several methods to discretize the periodic or-
bits of (5); they are mostly polynomial approximations
of the form

x(t) =
n+1∑

i=1

xiφi(t), (6)

where ti ∈ [0,1] is the set of discretization points,
xi = x(ti), and φi are the basis or trial function which
can be defined globally or piecewise. These methods
are distinguished by (1) the location of the discretiza-
tion points, and (2) the method for minimizing the
residual error [9, 35]. The location of the discretiza-
tion points determines the approximation interpolant
and its derivatives.

The choice of the discretization mesh, and hence
the approximation basis, is also dependent on the
method used for minimizing the residual error. For ex-
ample, if a Galerkin type approach is used, the selected
mesh needs to accommodate an accurate quadrature
rule such as a Gaussian quadrature. For collocation
type methods, the mesh nodes need to be optimally
placed to guarantee minimal residual error, e.g., the
nodes coincide with the roots or extrema of orthogo-
nal polynomials.

Examples of common discretization nodes include
the roots or the extrema of Chebyshev, Legendre, or
Hermite polynomials. Each of these meshes yields a
well-conditioned system, minimizes the residual error
and accommodates accurate Gauss quadrature rules.
Consequently, any of these meshes can be used in so-
lutions that are based on collocation or Galerkin meth-
ods. Alternatively, a Fourier approach can also be used
to find the periodic solution.

A Fourier approach has the advantage of automat-
ically incorporating a periodicity assumption which
eliminates the need for adding a periodicity condition.
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However, the Fourier approach cannot be used for sta-
bility calculations; hence, additional steps are neces-
sary to determine the stability of the DDE [9].

In this study, we use a piecewise polynomial ap-
proximation. The time interval [0,1] is discretized into
a finite number of temporal elements E. Each element
is described by the interval

ej = [t−j , t+j
)
, (7)

where j is the element index while t−j and t+j de-
note the left and right element boundaries, respec-
tively, with the length of the j th element given by

hj = t+j − t−j . (8)

A polynomial approximation is then used to obtain
an approximate expression for the states over each ele-
ment. For example, the states over the j th element are
approximated by

xj (t) =
n+1∑

i=1

φi(η)xji, (9)

where n is the order of the interpolating polynomial,
η ∈ [0,1] is the local time in the element normalized
by the length of the element, while xji = xj (ti) is the
state vector at the ith interpolation node within the j th
element.

Lagrange interpolation can be used to obtain the
trial functions according to

φi(η) =
∏n+1

k=1,k �=i (η − ηk)
∏n+1

k=1,k �=i (ηi − ηk)
, (10)

where the indices i and k refer to the ith and kth in-
terpolation nodes, respectively. The Lagrange polyno-
mial φi corresponding to the ith node has the property

φi(ηk) =
{

1, i = k,

0, otherwise,
j, k = 1, . . . , n + 1.

(11)

Equation (10) comes from the typical form of La-
grange interpolation which is only recommended for a
small number of nodes. Specifically, using this equa-
tion with high values for n requires a high number of
additions and multiplications and yields the computa-
tion numerically unstable [6]. A more effective repre-

sentation of Lagrange polynomials is provided by the
barycentric formula according to [22]

φi(η) =
�i

η−ηi∑n+1
k=1

�k

η−ηk

, (12)

where �k are the barycentric weights given by

�k = 1
∏

k �=j (ηj − ηk)
, j = 1, . . . , n + 1. (13)

The barycentric formula requires less computational
effort and has better numerical stability than the con-
ventional Lagrange representation [6, 22]; therefore,
it is used to generate the trial functions in the present
study.

Equation (12) can also be used to define an inter-
polation matrix that maps a set of arbitrary but distinct
points onto the set of interpolation points (also called
the base points). For example, let the vector of base
points be x1 ∈ R

n×1, and let the vector of the arbitrary
unique points be x2 ∈ R

m×1, then the effect of interpo-
lating x2 using x1 as the base points is described using
the linear transformation

x2 = Υ x1, (14)

where Υ ∈ R
m×n is called the interpolation matrix.

The entries of the interpolation matrix are calculated
using (12) according to

Υji = φi(ηj ), (15)

where ηj ∈ x2 and i ∈ 1,2, . . . , n. Equations (14) and
(15) define a linear transformation useful in interpo-
lating the delayed states in terms of the discretization
nodes.

In addition to being a more efficient tool to generate
the trial functions, the barycentric weights can be used
to obtain the value of the derivative of the trial func-
tions evaluated at the interpolation nodes according to

φ′
i (ηk) =

⎧
⎨

⎩

�i/�k

ηi−ηk
, i �= k,

∑n+1
i=0,i �=k

−�i/�k

ηi−ηk
, i = k.

(16)

These values are useful in evaluating the weighted
residual integrals in Galerkin-type methods using a
Gauss quadrature. Moreover, the values defined in (16)
form the entries of the differentiation matrix which de-
scribes a linear transformation from the values of the
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trial functions at the nodes to the values of the deriva-
tive of the trial functions at the same nodes. For ex-
ample, assume that the vector z ∈ R

n+1 contains the
values of a function G(t) : [0,∞) → R evaluated at
the n + 1 interpolation points. If the vector z′ contains
the derivative of G evaluated at the same collocation
points, then the effect of differentiating the function at
these points can be described by a differentiation ma-
trix D ∈ R

n+1×n+1 according to

z′ = D z, (17)

where the entries of D are defined from (16) according
to

Dki = φ′
i (ηk). (18)

In this study we use the Legendre–Gauss–Lobatto
points (LGL) as the interpolation nodes within each
elements. These points are obtained from solving for
the roots of the equation
(
1 − u2)L′

n(u) = 0, (19)

where u ranges from −1 to 1 and Ln(u) is the Leg-
endre polynomial of order n [41]. These points can be
shifted to an arbitrary interval [a, b] through the rela-
tion

ũ = b − a

2
u + b + a

2
, (20)

where u ∈ [−1,1] and ũ ∈ [a, b], e.g., if a = 0 and b =
1, then η = ũ. Using the LGL nodes also simplifies
the expression for the (n+ 1)× (n+ 1) differentiation
matrix in (17) to

D00 = −Dnn = −n(n + 1)

4
, (21a)

Dkm =
{

Ln(tk)
Ln(tm)

1
(tk−tm)

, k �= m

0, otherwise.
(21b)

3 Solution method

The periodic solution of (1) is obtained using Newton
iteration on the discretized version of the BVP (5). To
apply Newton iteration, the discretized version of (5)
is written in the form

fu(u)�u = f (u), (22)

where u = {xji, T } is the vector of discretized states.

This section derives the expressions that are neces-
sary to apply Newton iteration. Specifically, Sect. 3.1
gives the expression for the residual on the mesh
points and the discrete periodicity condition—which
are components of the f (u) term in (22). Section 3.2
shows the discrete version of the phase condition while
Sect. 3.3 derives the expression fu(u), which contains
the Jacobian used for periodic solution calculations.

3.1 The residual

Substituting (9) into the expression for f in (5) yields
the residual on the j th element according to

Rj =
n+1∑

i=1

1

hj

φ̇i(η)xji

− T g

(
n+1∑

i=1

φi(η)xji,

n+1∑

i=1

φi(η
∗)xq

j∗(t∗),i

)

, (23)

where the local normalized time is given according to

η∗ = t∗ − t∗−
j

h∗
j

, (24)

while the time t∗ is defined using modular arithmetics
according to

t∗ = t−j + ηhj − τ (mod 1). (25)

The function j∗(t∗) gives the element index to which
t∗ belongs and it is given by

j∗(t∗) =
E∑

j=1

jχej
(t∗), (26)

where the indicator function is defined as

χej
(t∗) =

{
1 if t∗ ∈ ej ,

0 otherwise.
(27)

If the elements are uniformly distributed, then (26) re-
duces to

j∗(t∗) =
⌈

t∗

h

⌉
, (28)

where �·	 is the ceiling function and h = 1/E is the
length of each of the uniform elements.



F.A. Khasawneh et al.

The positive integer q in (23) is the number of the
period to which the delay looks back and it is de-
scribed by the absolute value function

q =
∣
∣∣∣

⌊
t − τ

T

⌋∣∣∣∣, (29)

where 
·� is the floor function and with the under-
standing that q = 0 indicates a mapping onto the in-
terval [0,1].

The values assigned to the index q in (29) are used
in the stability analysis which does not make any as-
sumption on the periodicity of the linearized equa-
tions; see Sect. 4. However, since in this section, we
are seeking a periodic solution of (1), the delayed
term is handled using the modulo operation to map
the states onto [0,1] instead of [−τ/T ,1]. Specifi-
cally, for obtaining the periodic solution, the substitu-
tion q = 0 (indicating a mapping onto [0,1]) is made
in (23) resulting in the expression

Rj =
n+1∑

i=1

1

hj

φ̇i(η)xji

− T g

(
n+1∑

i=1

φi(η)xji,

n+1∑

i=1

φi(η
∗)xj∗(t∗),i

)

, (30)

where q = 0 was omitted to simplify notation. This
substitution eliminates the unknowns corresponding to
t < 0 and implicitly enforces the periodicity condition
for t < 0. Nevertheless, the periodicity condition at
t = 0 still needs to be enforced explicitly according
to

x(0) − x(1) = 0, (31)

where for a d-dimensional system, (31) gives d equa-
tions.

Using the method of weighted residuals on (23) re-
sults in

∫ 1

0

(
n+1∑

i=1

1

hj

φ̇i(η)xji − T g

)

ψp(η)dη = 0, (32)

where ψp are weight functions with p ∈ {1,2, . . . , n}.
A discrete version of the integral in (32) can be ob-
tained using Gaussian quadrature rules. To illustrate,
recall that a Legendre–Gauss–Lobatto (LGL) quadra-

ture rule can be used to approximate integrals accord-
ing to

∫ b

a

F (t)dt ≈ b − a

2

m+1∑

k=1

wkF(tk), (33)

where tk and wk are the LGL quadrature nodes and
weights, respectively. In this study, we chose the
quadrature nodes to be identical to the interpolation
nodes whereas the quadrature weights were calculated
using [32]

wk =
{ 2

n(n+1)
, k = 1, n + 1,

2
n(n+1)(Ln(ηk))

2 , otherwise.
(34)

If F(η) is a polynomial with a degree of at most 2n +
1, then it is sufficient to use n + 1 points in the Gauss
quadrature to yield an exact estimate of the integral
[15].

Using an LGL quadrature in (32) results in

n+1∑

k=1

(
n+1∑

i=1

1

hj

φ̇i(ηk)xji − T g

)

ψp(ηk)wk = 0. (35)

Let the value of the initial guess of the states on the
interpolation points within the j th element be repre-
sented by the vector x0. The delayed states xτ are then
obtained using interpolation according to

xτ = Υ(t∗→t)x0, (36)

where Υ is the matrix that interpolates the delayed
states in terms of the states at the interpolation points,
see (15). In addition, let D̂j be the differentiation ma-
trix on the j th element obtained using the Kronecker
product

D̂j = 1

hj

D ⊗ Id, (37)

where D is given by (21) while Id is the d ×d identity
matrix and d is the order of the nonlinear DDE. Using
the above definitions, (35) can be written as

R = WresR̂ = 0, (38)

where R̂ is given by

R̂ = D̂x0 − T g(x0,Υ(t∗→t) x0), (39)
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while the d(En + 1) × d(En + 1) matrix D̂ is the
global differentiation matrix which contains all the in-
dividual element differentiation matrices D̂j . The ma-
trix Wres : R

d(En+1) → R
dEn is given by

Wres =

⎛

⎜⎜⎜⎜
⎝

⎡

⎢⎢⎢⎢
⎣

w0 w1 . . . wn

w0 w1 . . . wn

...
...

. . .
...

w0 w1 . . . wn

⎤

⎥⎥⎥⎥
⎦

�

⎡

⎢⎢⎢⎢
⎣

ψ0(t0) . . . ψ0(tn)

ψ1(t0) . . . ψ1(tn)

...
. . .

...

ψn−1(t0) . . . ψn−1(tn)

⎤

⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟
⎠

⊗ Iq,

(40)

where wk are the interpolation weights given by (34)
while the symbol � denotes element-wise multiplica-
tion.

Convergence can then be obtained by increasing the
number of elements E and/or the order of the inter-
polation polynomial n. The method described above
which uses weighted residual integral to minimize the
error and uses quadratures to approximate integrals is
called the spectral element method [9]. This method
allows hp-refinement schemes and can yield higher
rates of convergence (spectral rates of convergence).
It is interesting to point out the connection between
the spectral element method we present here and the
typical collocation methods. This connection is best
described using (38) and (39). In fact, the term R̂ in
(38) is similar to the matrices that are generated from
a collocation scheme—where a set of algebraic equa-
tions is produced by evaluating the DDE at the collo-
cation points. The effect of invoking the spectral ele-
ment method is therefore described by (39) and it can
be thought of as a linear transformation of R̂.

Note that the discretization of f in (5) using E

elements and n + 1 interpolation nodes gives rise to
d(En + 1) unknown states. Appending the unknown
period T as the last entry in the vector of states u =
{xji, T } further increases the number of unknowns to
d(En + 1) + 1. To solve for the unknowns it is neces-
sary to obtain at least an equal number of equations.

Equation (38) provides dEn equations while the
periodicity condition in (31) provides d more equa-
tions. The last additional equation, corresponding to
the phase condition, is set to zero. Setting this entry

to zero is equivalent to stating that the phase condition
is always satisfied. The specific phase condition de-
scribed in (4) is taken into account in the term fu(u)

of (22) as will be shown in Sect. 3.3. Consequently,
d(En + 1) + 1 equations are obtained to solve for the
equal number of unknowns and they are arranged into
the column vector

f (u) =
⎡

⎣
R

x(0) − x(1)

0

⎤

⎦ . (41)

Equation (41) provides the expression for one of the
components in (22) that are necessary to apply Newton
iteration. The other components are described in the
following sections.

3.2 Discretized phase condition

Recall that the phase condition is necessary to ensure
a unique solution to (5). Assume that the order of the
DDE is d and that the interval [0,1] was divided into
E elements each with n + 1 interpolation nodes. The
phase condition in (4) can be described piecewise over
all the elements covering [0,1] according to

p(x) =
∫ 1

0
ẋT

0 x dx =
E∑

j=1

∫ t+j

t−j
ẋT

0 x dx. (42)

If a quadrature rule is defined on the n + 1 base
nodes within each element, (42) can be approximated
by

p(x) ≈
E∑

j=1

hj

2

n+1∑

k=1

wkẋ0kxjk, (43)

where wk are the quadrature weights.
Let x0 ∈ Rd(En+1) contain the initial guess of the

states on the base points. Further, let x ∈ R
d(En+1)

contain the true states on the same mesh.
Choosing the quadrature points to be identical

to the discretization points on [0,1], the discretized
phase condition reads

p(x) = (D̂x0
)T � (w ⊗ 11×d)x, (44)

where � indicates element-wise multiplication, 11×d

is a 1 ×d vector of ones while the 1 × (En+ 1) vector
w is given by

w =
[

h1w1

2

h1w2

2
. . .

h1wn+1 + h2w1

2
. . .

hEw1

2

hEw2

2
. . .

hEwn+1

2

]
. (45)
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Note that in w the entries at the beginning and end of
any two subsequent elements are added together.

3.3 The Jacobian

The other necessary component to apply Newton it-
eration on (30) is the term fu(u). This term contains
the linearized version of (30). The linearization of (30)
can be written in the form fu(u)�u = f (u) according
to

n+1∑

i=1

φ̇i (η)�xji − T A0(α)

n+1∑

i=1

φi(η)�xji

− T A1(α)

n+1∑

i=1

φ̇i (η
∗)�xj∗,i − g(α)�T

− τ

T
A1(α)

n+1∑

i=1

φ̇i (η
∗)xj∗,i�T

= −
n+1∑

i=1

φ̇i (η)xji + T g(α), (46)

where

α =
(

n+1∑

i=1

φi(η)xji,

n+1∑

i=1

φi(η
∗)xj∗,i

)

and

A0(ζ, η) = ∂

∂ζ
g(ζ, η), (47a)

A1(ζ, η) = ∂

∂η
g(ζ, η). (47b)

Evaluating (46) on the (En + 1) mesh points and
arranging the terms into matrices results in

J

[
�x

�T

]
= −R̂, (48)

where �x = x − x0, R̂ was described in (39) and the
matrix J has the dimensions d(En + 1) × d(En + 1)

+ 1.
The spectral element method is applied by multi-

plying both sides of (48) by Wres according to

WresJ

[
�x

�T

]
= −WresR̂. (49)

Define the dEn × d(En + 1) + 1 matrix Ĵ as Ĵ =
WresJ . The term fu(u) in (22) is then obtained by ap-
pending the continuity condition at t = 0 (i.e., x1(1) =
x0(0)) and the phase condition (44) to Ĵ . Specifically,
the expression for fu(u) is given by

fu(u) =
⎡

⎣
Ĵ

Id 0d . . . 0d −Id 0

p(x) 0

⎤

⎦ , (50)

where p(x) is given by (44). Equations (50) and (41)
can then be used in a Newton iteration algorithm (see
(22)) to solve for the states on the mesh points as well
as the period of the orbit.

4 Stability calculations

The basic tools to analyze the local stability of the
periodic orbits of (1) are the monodromy matrix and
Floquet theory. The monodromy matrix Q is the dis-
cretization of the time integration operator of the lin-
earized equation [28]. The discretization is performed
without the modulo operation, i.e., the linearized equa-
tion is discretized on [−τ̄ /T ,1]. This corresponds to
the linearization described in (23) except the index q is
maintained to keep track of the periods the delay looks
back to.

The linearized equations for stability analysis will
have a form similar to (46) with two main differences:
(1) the substitution xj∗,i = x

q
j∗,i is made to ensure cor-

rect mapping and (2) the partial derivatives with re-
spect to T are omitted. The monodromy matrix rep-
resents a linear map from the states in the segment
[−τ/T ,0] onto the states in the segment [−τ/T +
1,1] according to

uT = Qu0, (51)

where uT ∈ [−τ̄ /T + 1,1] and u0 ∈ [−τ̄ /T ,0]. The
stability of the periodic solutions is found from cal-
culating the eigenvalues (Floquet multipliers) of the
monodromy matrix. Besides a trivial +1 Floquet mul-
tiplier for autonomous systems, the system is stable if
the remaining multipliers are within the unit circle in
the complex plane; see Fig. 1. The computed eigen-
values of Q form approximations to the eigenvalues
of the integration operator.
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Fig. 1 The stability criteria dictates that all the eigenvalues μ

of the monodromy operator Q should lie within the unit circle in
the complex plane. Moreover, the manner in which the eigenval-
ues depart the unit circle produces different bifurcation behavior
as shown

As the discretization is refined by increasing the
number of the LGL nodes, and, consequently, the or-
der of the trial functions, more Floquet multipliers are
better approximated.

5 Examples

To demonstrate the effectiveness of the current ap-
proach, we calculate the periodic orbits and their sta-
bility for several case studies. We also calculate the
errors associated with the approximate periodic or-
bits using the error norms described in Sect. 5.1.
Section 5.2 studies the Mackey–Glass equation. Sec-
tions 5.3 and 5.4 study the delayed Van der Pol equa-
tion and the delayed Duffing equation, respectively. In
each case, the periodic orbit is calculated and plotted
and its stability is ascertained using the procedure de-
scribed in Sect. 4.

5.1 Error analysis

This section describes the error norms used in this
study. The error is calculated between the spectral
element solution and a reference solution for differ-
ent mesh sizes. This then enables the calculation of
the rate of convergence of the spectral element solu-
tion.

The norms typically used to quantify the error can
be categorized into continuous and discrete norms.
Continuous norms are defined over the whole period
whereas discrete norms are only defined at the rep-
resentation points. However, although discrete norms
show the super-convergence effects more clearly, they
do not always provide a good indication of the qual-
ity of the overall solution [3]. The two most com-
mon norms are the L2 and the L∞ norms defined
as

‖x‖2 =
(∫ 1

0

(
x(t) − x̃(t)

)2 dt)

) 1
2

(L2 norm), (52a)

‖x‖∞ = max
t∈[0,1]

(
x(t) − x̃(t)

)
(L∞ norm), (52b)

‖x‖2 =
(

n+1∑

k=1

(xk − x̃k)
2

) 1
2

(
2 norm), (52c)

‖x‖∞ = max
k

|xk − x̃k| (
∞ norm), (52d)

where x̃ is the reference solution, upper-case L de-
notes a continuous norm while lower-case 
 denotes
a discrete norm. Because of its extensive use in other
numerical continuation packages such as AUTO [11],
we will use the L2 norm in this study. Further, the dis-
crete norms 
2 and 
∞ will also be used to get a better
idea about the errors.

Equations (52) makes use of a reference solution x̃

which ideally would be an exact analytical solution. In
general, exact solutions of DDEs are not known and
instead a high accuracy solution using an approxima-
tion technique is used. The steps used in refining the
mesh and calculating the error are as follows:

1. Generate a high precision solution x̃, e.g., using
1,000 mesh points.

2. Generate the lower resolution initial solution xini

from x̃ using interpolation. This is the initial so-
lution that is used in the next step. Generating the
initial guess for the coarse solution from the ref-
erence solution ensures that there is no phase shift
between the two solutions.

3. Refine the initial solution xini from the previous
step using spectral element approach to obtain the
lower resolution solution x.

4. Use the selected norm from (52) to calculate the
error between x and x̃.

5. Increase the resolution and repeat the above steps
to calculate the error for various meshes.
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Fig. 2 The periodic
solution and the error norms
for (53) (where T ≈ 20.08).
The reference solution was
obtained using n = 1,000
and E = 1 while the error
norms were calculated
using (52a), (52c), and
(52d). In the error plots, the
values E = 1,2,3 were
used whereas n was varied
in the range 2 ≤ n ≤ 50

5.2 Mackey–Glass equation

The Mackey–Glass equation models the regeneration
of white blood cells [19, 29]. It is one of the classical
examples for using nonlinear DDEs in characterizing
physiological phenomena. The Mackey–Glass equa-
tion is given by

d

dt
x(t) = ax(t) + b

x(t − τ)

1 + xc(t − τ)
, (53)

where a, b, and c are scalars. For a = 1, b = 1.5,
c = 10, and τ = 2, there is a stable periodic solution,
shown in Fig. 2, with period T ≈ 20.08.

The results of the error analysis associated with
using the spectral element method are also shown in
Fig. 2. The reference solution shown in these figures
was obtained using the spectral element method with
n = 1,000 and E = 1 and it matched the solution
obtained from numerical simulation. For each error
norm, three curves corresponding to E ∈ {1,2,3} are
plotted as a function of n where 2 ≤ n ≤ 50. For each
value of E and n, an initial solution was constructed
from the reference solution to eliminate phase shifts
between the reference solution and the final solution.
The initial solution was then refined using Newton it-
eration. It can be seen that the method converges ex-
ponentially as evidenced by all the considered error

norms. For each error norm, there is a saturation point
where the error is no longer decreased with increasing
n and E indicating a close match with the reference so-
lution. Using the stability analysis described in Sect. 4,
the periodic orbit was found to be stable.

Note that in Fig. 2 the convergence rate improved
by increasing the number of elements, and conse-
quently the number of the mesh points. However, with
the spectral element method there are two techniques
that can be used to increase the size of the mesh: (1) fix
the number of elements and increase the order of the
interpolation polynomial (p-refinement) and (2) fix
the order of the polynomial and increase the number
of elements (h-refinement). Whereas the former tech-
nique was investigated in Fig. 2, the latter technique
was studied in Fig. 7.

In Fig. 7, the L2 norm is plotted against the length
of the uniform elements h = 1/E. The L2 norm was
chosen in this figure since it describes the quality of
the overall solution. The order of the interpolation
polynomial was held constant at either 3, 4, or 5 while
the length of the uniform elements was varied be-
tween 1/500 ≤ h ≤ 1, i.e., 1 ≤ E ≤ 500. Figure 7a
shows the plot that corresponds to the L2 error norm
of (53). It is shown that as n was held constant and h

was decreased, the error norm decreased linearly un-
til it reached a saturation point where any further re-
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Table 1 A comparison of the error values for (53) using different combinations of E and n that yield meshes with the same number
of points

E = 1 E = 2 E = 3

n L2 
2 
∞ n L2 
2 
∞ n L2 
2 
∞

18 6.23e−6 7.69e−6 1.55e−5 9 3.05e−5 7.41e−5 9.24e−5 6 2.02e−4 5.43e−4 4.57e−4

24 3.66e−7 4.48e−7 1.05e−6 12 3.43e−7 6.84e−7 8.53e−7 8 1.54e−5 4.15e−5 4.50e−5

30 5.09e−8 8.77e−8 1.44e−7 15 4.19e−8 9.26e−8 1.40e−7 10 4.09e−7 1.07e−6 1.57e−6

36 0 0 0 18 4.65e−8 1.06e−7 1.41e−7 12 3.07e−8 7.88e−8 1.04e−7

duction in the element length did not influence con-
vergence. From the numerical data in Table 4, the h-
refinement rate of convergence for (53) was approxi-
mately O(hn), where n is the order of the interpolation
polynomial.

Recall that the size of the mesh depends on the or-
der of the interpolation polynomial n and the number
of elements E. Assume that uniformly distributed el-
ements are used, then two meshes with equal size can
be produced if the values of n and E for these meshes
are chosen according to n1 E1 = n2 E2. A comparison
of the error norms for (53) associated with using dif-
ferent meshes with equal sizes is shown in Table 1.
Each (n,E) combination in any one row results in dif-
ferent meshes with equal sizes. Therefore, the corre-
sponding error norms in each row can be compared
to evaluate—for the same mesh size—the effect of in-
creasing n versus increasing E. Table 1 shows that for
this example it is more advantageous to hold E fixed
while n is increased. We stress that the above discus-
sion is only valid for equally distributed elements. In-
deed, we suspect that using an adaptive mesh where
the elements are clustered near regions of sharp so-
lution changes will improve convergence. However,
adaptive meshes are outside the scope of this study
and therefore we will only study equally distributed
elements.

5.3 Delayed Van der Pol equation

The Van der Pol equation was introduced in the 1920s
as a model to describe the oscillations in the vacuum
tube triode circuit. This equation became a classical
example in nonlinear dynamics and has been used
widely to model systems with limit cycle oscillations.
Adding a feedback term, which could be the result of a

delayed feedback controller, yields a delayed Van der
Pol equation according to [1, 27]

ẍ(t) + ε
(
x2 − 1

)
x(t − τ) + x(t) = 0. (54)

For ε = 0.1 and τ = 4.6, a stable periodic solution is
shown in Fig. 3 with period T ≈ 6.38 while the first
derivative is shown in Fig. 4.

The results of the error analysis associated with us-
ing the spectral element method to obtain the solution
are shown in Fig. 3. The reference solution shown in
these figures was obtained using the spectral element
method with n = 1,000 and E = 1 and it matched the
solution obtained from numerical simulation. For each
error norm, three curves corresponding to E ∈ {1,2,3}
are plotted as a function of n where 2 ≤ n ≤ 25. For
each value of E and n, an initial solution was con-
structed from the reference solution and then was cor-
rected using Newton iteration. It was noticed that in-
creasing n beyond 25 yielded 0 error norms indicating
a match between the calculated solution and the refer-
ence solution.

Similar to Fig. 2, it can be seen that the method
converges exponentially as evidenced by all the con-
sidered error norms. Further, the convergence rate is
improved as the number of mesh points is increased
via increasing E from 1 to 3. Similar conclusions can
be drawn from the analysis of the derivative of the pe-
riodic solution shown in Fig. 4. Applying the stability
analysis described in Sect. 4 confirmed the stability of
the calculated periodic orbit.

Figure 7b shows the ‖x‖2 norm as a function of h,
the uniform element length. The order of the interpo-
lation polynomial was held constant at either 3, 4, or
5 while the length of the uniform elements was varied
between 1/500 ≤ h ≤ 1, i.e., 1 ≤ E ≤ 500. It is shown
that for n = 3, the error norm decreased linearly as
h was decreased. For n = 5, the error norm also de-
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Fig. 3 The periodic
solution and the error norms
for (54) (where T ≈ 6.38).
The reference solution was
obtained using n = 1,000
and E = 1 while the error
norms were calculated
using (52a), (52c), and
(52d). In the error plots, the
values E = 1,2,3 were
used whereas n was varied
in the range 2 ≤ n ≤ 25

Fig. 4 The first derivative
of the periodic solution to
(54) and the corresponding
error norms

creased linearly except at E ∈ {5,6,7} where the er-
ror dropped from 4.70e − 3 at E = 4 to 4.81e − 6 at
E = 5 before going back up at E = 6,7 to continue
its linear trend. Table 4 shows the approximate rate of
convergence for n = 3 and n = 5 which was found to

be approximately O(hn). However, the error plot for
n = 4 showed a different trend. For this case, although
the first part of the error plot was linear with a con-
vergence rate of approximately O(h4) (see Table 4),
it dropped from 2.67e − 5 at E = 16 to 2.39e − 13
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Table 2 A comparison of the error values for (54) using different combinations of E and n that yield meshes with the same number
of points

E = 1 E = 2 E = 3

n L2 
2 
∞ n L2 
2 
∞ n L2 
2 
∞

x norms

12 4.85e−4 6.02e−4 1.10e−3 6 1.30e−2 2.38e−2 2.91e−2 4 2.93e−2 7.32e−2 6.81e−2

18 6.88e−7 8.66e−7 1.51e−6 9 1.68e−5 2.93e−5 3.27e−5 6 9.47e−4 2.40e−3 2.00e−3

24 1.91e−8 2.34e−8 3.60e−8 12 7.65e−5 1.30e−4 1.76e−4 8 9.99e−5 2.51e−4 2.29e−4

ẋ norms

12 6.57e−4 8.42e−4 1.60e−3 6 1.29e−2 2.91e−2 3.10e−2 4 2.67e−2 7.16e−2 5.74e−2

18 2.56e−5 3.05e−5 5.33e−5 9 6.25e−5 1.07e−4 1.29e−4 6 9.57e−4 2.40e−3 2.00e−3

24 1.46e−7 1.74e−7 3.35e−7 12 7.11e−5 1.69e−4 1.94e−4 8 1.03e−4 2.58e−4 2.38e−4

at E = 17 where it reached a saturation region where
the errors were not practically reduced as h was de-
creased. Similar observation can be seen for the ‖ẋ‖2

results in Fig. 7c.
A comparison of the error norms for (54) associated

with using different meshes with equal sizes is shown
in Table 2. Each (n,E) combination in any one row
results in different meshes with equal sizes. Table 2
shows that for this example it is more advantageous to
hold E fixed while n is increased. We reiterate though
that the above discussion is only valid for equally dis-
tributed elements and that adaptive meshes can often
yield more favorable results.

5.4 Delayed Duffing equation

The Duffing equation is another classical example
of nonlinear equations. It appears in the models of
many dynamical systems such as magnet-based non-
linear energy harvesters [30]. The Duffing equation
was studied extensively in literature. For example, the
harmonically forced delayed Duffing oscillator was in-
vestigated in [23]. However, the analysis in that study
used the method of multiple scales which was confined
to the case of small damping, weak nonlinearity, weak
feedback and soft excitation. In the current investiga-
tion, we study the autonomous version of the delayed
Duffing oscillator; however, we relax the restricting
assumptions imposed in [23]. Specifically, a Duffing
oscillator with state feedback can be described by the
equation

ẍ(t) + 2ζ ẋ(t) + x(t) + 3μx3(t)

= 2ux(t − τ) + 2vẋ(t − τ) (55)

where ζ , μ, u and v are scalars and τ > 0 is a con-
stant time delay. If the parameters ζ = μ = u = 0.05,
ν = −0.05 and τ = π are used in (55), then the result-
ing periodic solution (with T ≈ 4.51) and its derivative
can be described by Figs. 5 and 6, respectively.

The results of the error analysis associated with us-
ing the spectral element method to obtain the solu-
tion are also shown in these two figures. The reference
solution was obtained using 500 elements each with
a 5th order interpolating polynomial. For each error
norm, three curves corresponding to E ∈ {1,2,5} are
plotted as a function of n where 2 ≤ n ≤ 40. For each
value of E and n, an initial solution was constructed
from the reference solution and then was corrected us-
ing Newton iteration. It was noticed that the spectral
element solution converged to the reference solution
(zero error norms) with exponential convergence rate
using the following (E,n) pairs: (1,39), (2,18), and
(5,12). Faster convergence was achieved as E was in-
creased from 1 to 5 and lower values for n were needed
to obtain zero error norms. Similar conclusions can be
drawn from the analysis of the derivative of the peri-
odic solution shown in Fig. 6. Applying the stability
analysis described in Sect. 4 confirmed the stability of
the calculated periodic orbit.

Figure 7d shows the ‖x‖2 norm as a function of
h—the uniform element length. The order of the in-
terpolation polynomial was held constant at either 3,
4 or 5 while the length of the uniform elements was
varied between 1/500 ≤ h ≤ 1, i.e., 1 ≤ E ≤ 500. It is
shown that for n = 3, the error norm decreased linearly
as h was decreased. For n = 5, the error norm also de-
creased linearly except at one point. Specifically, the
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Fig. 5 The periodic
solution and the error norms
for (55) (where T ≈ 4.51).
The reference solution was
obtained using E = 500 and
n = 1,000 while the error
norms were calculated
using (52a), (52c), and
(52d). In the error plots, the
values E = 1,2,5 were
used whereas n was varied
in the range 2 ≤ n ≤ 40

Fig. 6 The first derivative
of the periodic solution to
(55) and the corresponding
error norms

error dropped from 6.87e − 4 at E = 7 to 1.42e − 13
at E = 8 before going back to 2.37e − 4 at E = 9 and
continuing the initial linear trend for E ≥ 9. Ignoring
the anomaly at E = 7, the numerical data in Table 4

indicate that both n = 3 and n = 5 converged at a rate
of approximately O(hn).

On the other hand, the case n = 4 showed a differ-
ent behavior. For this case, the convergence rate did
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Fig. 7 The L2 error plotted
against the mesh size
h = 1/E for (53) (a), (54)
(b, c), and (55) (d, e) using
cubic (+), quartic (◦) and
quintic (×) polynomials.
The first column shows the
error of the solution
whereas the second column
shows the error of the
derivative

not follow a linear trend. In fact, after initially lagging
behind the error for n = 5 case, the error for n = 4
dropped from 2.93e − 4 at E = 20 to 5.27e − 14 at
E = 21 and remained in a saturation region where fur-
ther decrease of h did not improve convergence. Ac-
tually, below a certain h, the errors started growing as
h was decreased. This is attributed to the limitations
of the double precision arithmetic that was used. To
elaborate, as the errors in the solution of the spectral
element method become very small, the errors in the
linear solve step of the Newton iteration become rel-
atively large [3]. Similar observation can be seen for
the ‖ẋ‖2 results in Fig. 7e.

A comparison of the error norms for (55) associated
with using different meshes with equal sizes is shown
in Table 3. Each (n,E) combination in any one row
results in different meshes with equal sizes. Table 3
shows that for this example it was more advantageous

to hold E fixed while n was increased. However, us-
ing an adaptive mesh can often yield more favorable
results especially with sharply-changing solutions.

6 Conclusions

This paper considered an alternative approach to nu-
merically approximating periodic orbits of nonlinear
DDEs based on the spectral element method. This
method is a modification of the spatial spectral ele-
ment method which has been widely used in simulat-
ing the partial differential equations arising in models
of fluids and structures [33, 41]. The temporal spec-
tral element method can also be viewed as an evolu-
tion of the state-space temporal finite element method
(state-space TFEA) which has been used to study the
stability of equilibria of linear DDEs [25, 31, 38].
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Table 3 A comparison of the error values for (55) using different combinations of E and n that yield meshes with the same number
of points

E = 1 E = 2 E = 3

n L2 
2 
∞ n L2 
2 
∞ n L2 
2 
∞

x norms

20 4.14e−5 5.89e−5 9.10e−5 10 1.40e−3 3.30e−3 3.30e−3 4 2.30e−2 7.60e−2 5.99e−2

30 1.20e−7 1.53e−7 2.61e−7 15 2.44e−7 5.73e−7 6.11e−7 6 5.02e−4 1.60e−3 1.50e−3

40 0 0 0 20 0 0 0 8 1.04e−5 3.44e−5 3.24e−5

ẋ norms

20 2.77e−4 3.43e−4 6.61e−4 10 2.80e−3 4.80e−3 5.60e−3 4 4.78e−2 1.52e−1 1.36e−1

30 1.26e−6 1.55e−6 2.99e−6 15 5.19e−7 9.13e−7 1.22e−6 6 1.10e−3 3.50e−3 3.50e−3

40 0 0 0 20 0 0 0 8 2.63e−5 8.34e−5 8.18e−5

Table 4 Numerically computed orders of convergence for cu-
bic, quartic and quintic polynomials with the solution of (53),
the solutions and the derivative of (54), and the solution and the
derivative of (55). Entries marked with a ‘∗’ represent the order
of convergence of the linear part of the error norm

Eq. (53) Eq. (54) Eq. (55)

n ‖x‖2 ‖x‖2 ‖ẋ‖2 ‖x‖2 ‖ẋ‖2

3 2.78 2.95 2.94 2.91 2.90

4 4.00 3.99∗ 3.94∗ rate not linear rate not linear

5 5.15 5.00 5.02 5.27 5.29

The spectral element method was shown to suc-
cessfully produce the periodic solutions of nonlinear
DDEs. The considered case studies were obtained by
introducing delays to three standard equations from
the nonlinear dynamics literature: the Mackey–Glass
equation (scalar), the Van der Pol equation (2nd order),
and the Duffing equation (2nd order). The periodic
solutions obtained with the spectral element method
converged to the reference solutions as was shown in
Figs. 2–6. The error norm plots showed that as n was
increased, exponential rates of convergence were ob-
served in all the considered examples.

In fact, Figs. 3–6 show that the zero error norms
can be obtained for several combinations of (E,n).
These figures also showed that as the size of the mesh
was increased by increasing the number of elements,
the solution converged faster to the reference solu-
tion. This demonstrates the hp-refinement capability
of the current approach where 2 methods can be used
to speed up convergence: either increase the number

of elements E or increase the order of the interpolat-
ing polynomials n.

The L2 error norm associated with increasing E

while holding n constant was shown in Fig. 4. For the
Mackey–Glass equation, it was found that the spectral
element method converged at a rate of approximately
O(hn) as was shown in Table 4. Similarly, for the de-
layed Van der Pol and the delayed Duffing equation,
it was found that the error norms for 3rd and 5th or-
der polynomials typically followed a linear trend to
convergence at a rate of approximately O(hn); see Ta-
ble 4. However, for the delayed Van der Pol equation,
it was found that a 4th order polynomial would ini-
tially follow a linear convergence rate before reaching
a critical h value where the solution would nonlinearly
converge with a rate that is even faster than the 5th or-
der polynomial rate.

Further, for the delayed Duffing equation, it was
found that using a 4th order polynomial would yield
nonlinear rates of convergence that would exceed
those of the corresponding 5th order approximation.
In addition, using a 5th order polynomial in the Duff-
ing equation showed a linear rate of convergence ex-
cept at a critical h value where the solution would
seem to converge before the error increased again and
continued to follow a linear trend as h was decreased.
Explaining the above anomalies is a topic of future
reach; however, the authors speculate that they might
be associated with the accuracy of the differentiation
matrix in representing the real differential operator at
these n and h values.

In addition, the stability of the periodic solutions
was substantiated using the concepts described in
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Sect. 4. The results of this study establish the spectral
element approach as a useful technique for studying
nonlinear delay equations and open up a wider range
of applications where this technique can be used.
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